in the tree.

END TEDM EXAMINATION

FOURTH SEMESTER [MCA] MAY 2017	
Paper Code: MCA-202	Subject: Design and Analysis of Algorithm
Time: 3 Hours	Maximum Marks: 75
Note: Attempt any five questions incl Select one question	uding Q.no.1 which is compulsory. I from each Unit.
array and compute its time com (b) Define ω and θ asymptotic notation (c) Solve the recurrence relation method. (d) Generate a binary search tree of 26, 35, 71, 55, 90, 33, 66 in the (e) What is the maximum and minheight h? (f) Define an AVL tree and how is it?	tions. In $T(n) = 9T(n/3) + n$ using master by inserting node values 10, 5, 40, 29, the given order. In the balance factor of a node decided in the balance factor of a node decided in the applied on a graph with negative the factor.
Uni	
the definition of θ -notation promax $(f(n), g(n)) = \theta(f(n) +$	g(n)). (6) d its recursive relation for computation
Q3 (Solve the following recurrence $T(n) = 2T(n-1)$ and $T(n) = 2T(n-1)$	relation $T(0) = 1.$ (6) od to solve the recurrence relation. (6.5)
Uni	it-II
Q4 a) Sort the following numbers us 54, 23, 20, 10, 59, 49, 38, 75,	ing insertion sort. 46, 95, 64, 78, 26, 80, 81, 76 (6)
(b) Write an algorithm for depth complexity.	first search of a graph and find its time (6.5)
Q5 (a) Explain heap sort with suitable (b) What do you mean by a red-bit	le example. (6) lack tree? Prove that maximum height of

this tree can be $2 * \log(n + 1)$ where n is the number of internal nodes (6.5) P.T.O. MCA-202

Unit-III

Q6 (a) Write an algorithm to find the longest common subsequence. (6) (b) Write an algorithm for finding a minimal cost binary search tree. (6.5)

(a) Explain Robin Karp string matching algorithm with suitable example. (6) (b) Write Prim's algorithm for finding minimum cost spanning tree. (6.5)

Unit-IV

Q8 (a) Explain subset sum problem. Write a function for it.
(b) Explain Hamiltonian circuit problem.
(6.5)

Q9 Prove that CNF satisfibiality is an NP complete problem. (12.5)

MCA-202