END TERM EXAMINATION

Fourth Semester [BCA] MAy-June 2012

Note: Q.no. 1 is compulsory. Attempt one question from each unit.
Q1 (a) In a single throw of two dice, find the probability of getting a total of 9.
(b) Find n if $P(n, 2)=72$.
(c) Let $\mathrm{y}=\mathrm{f}(\mathrm{x})$ and $\mathrm{a}, \mathrm{a}+\mathrm{h}, \mathrm{a}+2 \mathrm{~h}, \ldots$ be consecutive values of x . Define the operations Δ and E as $\Delta f(x)=f(x+h)-f(x), \quad E f(x)=f(x+h)$. Show that $E=I+\Delta$ and $E \Delta=\Delta E$. Where I denotes the identity operator.
(d) The sum and product of the mean and variance of a binomial distribution are 24 and 128 . Find the distribution.
(e) Let X be a Poisson variate. If $P(X=0)=P(X=1)$ find $\mathrm{E}(\mathrm{X})$, the expectation of X .
(f) (i) Correlation coefficient is the Mean of the regression coefficient.
(ii) Regression coefficients areof the change of origin but of scale. (3)
(g) Form a forward difference table of the function $f: R \rightarrow R$ defined as
' $f(x)=x^{3}-4 x^{2}-5 x+1$ for $\mathrm{x}=0,1,2,3,4$; R denoting the set of all real numbers. Find $\Delta^{4} f(0)$.
(h) Prove that $\Delta\left(\log _{e} f(x)\right)=\log _{e}\left[1+\frac{\Delta f(x)}{f(x)}\right]$ where Δ denotes the forward difference operator.
(i) Evaluate $\int_{0}^{4} e^{x} d x$ by using Simpson's one-third rule by dividing the range $[0,4]$ into 4 equal parts using $\mathrm{e}=2.72, \mathrm{e}^{2}=7.39, \mathrm{e}^{3}=20.09$ and $\mathrm{e}^{4}=54.6$.

UNIT-I

Q2 (a) Let A and B be two events such that $P(A)=\frac{3}{4}$ and $P(B)=\frac{5}{8}$. Show that $\frac{3}{8} \leq P(A \cap B) \leq \frac{5}{8}$.
(b) Let A and B be two events such that $P(A)=\frac{5}{10}$ and $P(B)=\frac{8}{10}$. Find the conditional probabilities $P(A / B)$ and $P(B / A)$.

Q3 (a) Find the number of ways in which 4 red, 3 black and 2 yellow balls can be arranged in a row.
(b) Given $C(48,12)+C(48,13)+C(49,14)=C(50, x)$. Find x. Here $C(n, r)$ denotes the number of ways in which r objects can be chosen out of n distinct objects.

UNIT-II

Q4 (a) Let X be a binomial variate with mean 4 and variance $\frac{4}{3}$. Find $P(X \geq 1)$.
(b) Let X be a Poisson variate. If $P(X=2)=9 P(X=4)+90 P(X=6)$ show that $\mathrm{E}(\mathrm{X})=1, \mathrm{E}(\mathrm{X})$ denoting the expectation of X .
P.T.O.
(a) The lines of regression of y on x and x on y are $4 x-5 y+33=0$ and $20 x-9 y$ $107=0$ respectively. Determine the means x, y and the coefficient of correlation between x and y.
(6.5)
(b) By using the normal equations, fit a parabola $\mathrm{Y}=\mathrm{aX}^{2}+\mathrm{bX}+\mathrm{C}, \mathrm{a} \neq 0$, to the following data:
(6)

\mathbf{x}	0	1	2	3	4
\mathbf{y}	1	5	10	22	38

UNIT-III

(a) Given the data:

\mathbf{x}	3	4	5	6	7	8	9
\mathbf{y}	4.8	8.4	14.5	23.6	36.2	52.8	73.9

Find $y(1)$ and $y(10)$.
(b) Given the data-

\mathbb{x}	2	4	9	10
$f(\mathbb{z})$	4	56	711	980

Find the polynomial $f(x)$ by using Newton's divided difference formula.

UNIT-IV

Q8 (a) Find the LU decomposition of the matrix $A=\left(\begin{array}{lll}3 & 2 & 7 \\ 2 & 3 & 1 \\ 3 & 4 & 1\end{array}\right)$.
(b) Using Gauss Elimination method, solve the following system of linear equations.

$$
\begin{align*}
& x+y+z=9 \tag{6.5}\\
& 2 x-3 y+4 z=13 \\
& 3 x+4 y+5 z=40
\end{align*}
$$

Q9 (a) Using Jacobi's iteration method, solve the following system of linear equations:

$$
20 x+y-2 z=17,30 x+20 y-z=-18,2 x-3 y+20 z=25
$$

Hint: Start with $\mathrm{x}_{0}=0, \mathrm{y}_{0}=0, \mathrm{z}_{0}=0$ to get the first iteration ($\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}$), obtain the $5^{\text {th }}$ and $6^{\text {th }}$ iterations and conclude the approximate solution.
(6.5)
(b) Given the data-

\mathbf{x}	1.0	1.1	1.2	1.3	1.4	1.5	1.6
\mathbf{y}	7.989	8.403	8.781	9.129	9.451	9.750	10.031

Find $\left(\frac{d y}{d x}\right)_{x=1.1}$ and $\left(\frac{d^{2} y}{d x^{2}}\right)_{x=1.1}$ by using Newton's forward formula of interpolation.

