Paper Co	ode: BCA202	Subject: Mathematics-IV
rime : 3 l	Hours	Maximum Marks :75
M	Note: Q.no.1 is compulsory. Atte	mpt one question from each unit.
21 (a) (b) (c)	In a single throw of two dice, find Find n if P(n,2)=72. Let $y=f(x)$ and a, $a+h$, $a+2h$, operations A and E as $\Delta f(x)$:	the probability of getting a total of 9. (2) (2) . be consecutive values of x. Define the f(x+h) - f(x). $Ef(x) = f(x+h)$.
(d)	Show that $E = I + \Delta$ and E operator. The sum and product of the me are 24 and 128. Find the distribution	$E\Delta = \Delta E$. Where I denotes the identity (3) can and variance of a binomial distribution (3) ation. (3)
(e) (f) (g)	Let X be a Poisson variate. expectation of X. (i) Correlation coefficient is the . (ii) Regression coefficients are Form a forward difference ta $f(x) = x^3 - 4x^2 - 5x + 1$ for x=0	If $P(X=0) = P(X=1)$ find E(X), the (3) Mean of the regression coefficient. of the change of origin but of scale. (3) able of the function f:R \rightarrow R defined as 0,1,2,3,4; R denoting the set of all real
(h)	numbers. Find $\Delta^4 f(0)$. Prove that $\Delta(\log_e f(x)) = \log_e f(x)$ difference operator.	(3) $_{e}\left[1 + \frac{\Delta f(x)}{f(x)}\right]$ where Δ denotes the forward (3)
(i)	Evaluate $\int_{0}^{4} e^{x} dx$ by using Sim [0,4] into 4 equal parts using e=2	pson's one-third rule by dividing the range 2.72 , $e^2=7.39$, $e^3=20.09$ and $e^4=54.6$. (3)
	UN	IT-I
)2 (a)	Let A and B be two events such $\frac{3}{8} \le P(A \cap B) \le \frac{5}{8}$.	that $P(A) = \frac{3}{4}$ and $P(B) = \frac{5}{8}$. Show that (6.5)
(b)	Let A and B be two events such conditional probabilities $P(A/A)$	that $P(A) = \frac{5}{10}$ and $P(B) = \frac{8}{10}$. Find the B) and $P(B/A)$. (6)
23 (a)	Find the number of ways in which arranged in a row.	ch 4 red, 3 black and 2 yellow balls can be (6)
(b)	Given $C(48,12) + C(48,13) + C(4$	C(49,14) = C(50, x). Find x. Here $C(n,r)which r objects can be chosen out of n(6.5)$

Q4 (a) Let X be a binomial variate with mean 4 and variance $\frac{4}{3}$. Find $P(X \ge 1)$.(6)

(b) Let X be a Poisson variate. If P(X = 2) = 9P(X = 4) + 90P(X = 6) show that E(X)=1, E(X) denoting the expectation of X.

P.T.O.

[-2-]

05

107=0 respectively. Determine the means x, y and the coefficient of correlation between x and y. (6.5)

(b) By using the normal equations, fit a parabola $Y=aX^2+bX+C$, $a\neq 0$, to the following data: (6)

x	0	1	2	3	4	
У	1	5	10	22	38	

UNIT-III

06

. Define the	nsecutive values of x.	the cons	a+2h,be	ind a, a+h, a	Let y=f(x)	(a)
as	∇	and	1	Δ	operators	
. Prove that)=f(x)-f(x-h).	$\nabla f(x)$	f(x) and	f(x+h)-f	$\Delta f(x) =$	
10	∇	$7 = \Delta$	$\rightarrow \Lambda + \nabla$	$7A = A \nabla$	() AV7 -	
(6)	A ·	- 57	(11)	$\Delta = \Delta - \nabla$	$(1) \Delta V =$	1

- (b) Find a root of the equation $x^3-4x-9=0$ by using the bisection method in four (6.5)stages.
- 07 (a) Given the data:

X	3	4	5	6	7	8	9	1	
y	4.8	8.4	14.5	23.6	36.2	52.8	73.9		

(b) Given the data-

ж	2	4	9	10
f(x)	4	56	711	980

Find the polynomial f(x) by using Newton's divided difference formula. (6.5)

UNIT-IV

- 3 2 (a) Find the LU decomposition of the matrix $A = \begin{bmatrix} 2 & 3 \end{bmatrix} 1$ Q8 (6) 3 4
 - (b) Using Gauss Elimination method, solve the following system of linear equations. (6.5)
 - x + y + z = 92x - 3y + 4z = 133x + 4y + 5z = 40
- 09 (a) Using Jacobi's iteration method, solve the following system of linear equations:

20x + y - 2z = 17, 30x + 20y - z = -18, 2x - 3y + 20z = 25,

Hint: Start with $x_0=0$, $y_0=0$, $z_0=0$ to get the first iteration (x_1, y_1, z_1) , obtain the 5th and 6th iterations and conclude the approximate solution. (6.5)(b) Given the data-

x	1.0	1.1	1.2	1.3	1.4	1.5	1.6	
У	7.989	8.403	8.781	9.129	9.451	9.750	10.031	
Fin	$d \left(\frac{dy}{dx}\right)$	$\Big)_{x=1.1}$ and	$\frac{d^2 y}{dx^2}$	$\int_{x=1.1}^{\infty}$ by	y using 1	Newton's	forward	formula of
into	molation							161

(6)