END TERM EXAMINATION

THIRD SEMESTER [BCA], DECEMBER - 2010

Paper Code: BCA / 201 Subject: Mathematics - III

Paper ID : 20201

Time: 3 Hours Maximum Marks: 75

Note: Q. No. 1 is compulsory. Internal choice is indicated.

- **Q. 1.** (a) Prove that $\sin h^{-1}x = \log(x + \sqrt{x^2 + 1})$ (2.5)
 - **(b)** Show that $(1+i\sqrt{3})^8 + (1+i\sqrt{3})^8 = -2^8$ (2.5)
 - (c) What are the Dirichlet's conditions for a Fourier series? (2.5)
 - (d) Prove that, for every field \overrightarrow{V} , div (curlv) = 0 (2.5)
 - (e) Show that curl of a vector field is connected with rotational properties of the vector field and justifies the name rotation for curl.
 - (f) Examine the convergence of $\sum_{n=1}^{\infty} ne^{-n^2}$ (2.5)
 - (g) Represent the following function by a fourier series f(x) = x, $0 < x < 2\pi$ (2.5)
 - (h) Discuss the convergence and divergence of P-series. (2.5)
 - (i) Solve the differential equation $x^4 \frac{dy}{dx} + x^3y = -\sec(xy)$ (2.5)
 - (j) Find PI of $(D^2 5D + 6) = e^x \cos 2x$ (2.5)
- Q. 2. (a) Show that the function z|z| is not analytic anywhere: (3)
 - (b) Evaluate $\lim_{z \to 1+i} \left(\frac{z-1-i}{z^2-2z+2} \right)^2$ (3)
 - (c) Use De Moivre's theorem to solve the equation $x^4 x^3 + x^2 x + 1 = 0$ (6.5)

OR

(2.5)

END TERM EXAMINATION

(a). Show that

$$\left(\frac{1+\sin\theta+i\cos\theta}{1+\sin\theta-i\cos\theta}\right)^{n} = \cos n\left(\frac{\pi}{2}-\theta\right)+i\sin n\left(\frac{\pi}{2}-\theta\right) \tag{6.5}$$

(Please write voite Exam. Roll No.)

(b) If n is a positive integer, prove that

$$(\sqrt{3}+i)^n + (\sqrt{3}+i)^n = 2^{n+1}\cos\frac{n\pi}{6}$$
 (3)

(c) Write $\log (x + iy)$ in the form a + ib. (3)

Q. 3. Solve :

(a)
$$\frac{dy}{dx} = \frac{x + 2y - 3}{2x + y - 3}$$
 (6.5)

(b)
$$(D^2 + 5D + 6) y = e^{-2x} \sec^2 x (1 + 2 \tan x)$$
 (6)

OR

(a)
$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 2y = e^{-x} \sec^3 x$$
 (6.5)

(b) If $\frac{dy}{dx} + 2y \tan x = \sin x$, and y = 0

for
$$x = \frac{\pi}{3}$$
, show that maximum value of y is $\frac{1}{8}$. (6)

Q. 4. (a) Obtain the Fourier series for function $f(x) = x^2, -\pi < x < \pi$, hence deduce

$$\sum_{n=1}^{\infty} \frac{1 \operatorname{sigd}_{2} \pi^{2}_{n}}{(2n-1)^{2}} = \frac{\pi^{2}_{n}}{8} \operatorname{sinviend for } \mathbb{Z} \setminus \mathbb{Z}$$
(6.5)

(b) Show that $\overrightarrow{V} = (2xy + z^3)i + x^2j + 3xz^2k$ is a conservative field. (d) Find its scalar potential ϕ such that $\overrightarrow{V} = \operatorname{grad} \phi$. Find the work done by the force \overrightarrow{V} in moving a particle from (1, -2, 1) to (3, 1, 4).

(a) Verify the Green's theorem in the plane for $\int_{C} (3x^2 - 8y^2) dx + (4y - 6xy) dy$ where C is the boundary of region

bounded by
$$y = \sqrt{x}, y = x^2$$
. (6.5)

(b) Represent the following function by a fourier Sine series

$$f(t) = \begin{cases} t, & 0 < t \le \frac{\pi}{2} \\ \frac{\pi}{2}, & \frac{\pi}{2} < t \le \pi \end{cases}$$
 (6)

Q. 5. (a) Test the series $1 + \frac{2x}{2} + \frac{3^2x^2}{2} + \frac{4^3x^3}{2} + \cdots$ (6.5)

(b) Test the series
$$\frac{2}{3}x + \left(\frac{3}{4}x\right)^2 + \left(\frac{4}{5}x\right)^3 + \cdots$$
 (6)

OR

(a) Find the directional derivative of div (\vec{u}) at the point (1, 2, 2) in the direction of the outer normal of sphere $x^2 + y^2 + z^2 = 9$ for

$$(\vec{u}) = x^4 i + y^4 j + z^4 k$$
 (3.5)

- (b) Find the value of n for which $r^n \bar{r}$ is solenoidal, $\bar{r} = xi + yj + zk$ (3)
- (c) Test the following series for convergence and divergence
 - (i) Exponential Series (2)
 - (ii) Logarithmic Series (2)
 - (iii) Binomial Series (2)

+++