P.T.O.

(Please write your Exam Roll No.)

END TERM EXAMINATION

SECOND SEMESTER [BCA] MAY-JUNE-2009

Paper Code: BCA102 Paper Id-20102	Subject: Mathematics-II.
Time: 3 Hours	Maximum Marks :75
Note: Q.1 is compulsory. Attempt any one question from each Unit.	
defined on P(S), then sl	y set and P(s) be the power set of S. If ' \subseteq ' is a relation now that $(P(S),\subseteq)$ is a poset. ations from the set A to B, then show that
positive real numbers is (d) Draw the Hasse diagram	$m[D_{20},1].$
(e) Find the angle between	the line $\frac{x-3}{2} = \frac{y-1}{4} = \frac{z-2}{3}$ and the plane x-y+2z=3.
WIF A-14 5 7 8 101 B=14	for the region in the positive quadrant for which $x + y \le 1$ 5,9} verify that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$. integration the area between the parabolas is $\frac{16}{3}a^2$
y = 4ux and $x = 4uy$	3
(j) Give all partitions of S= (j) What is the shortest equations of shortest d	distance between two given lines? Also, give the
Auto, and tell manufact mate	LINIT I
that (CXB)-(AXB)=BXB (b) In a group of students	, 70 have a personal computer, 120 have a personal th. How many own at least one of these devices? Draw
integers Z a partial ord	D - f I in defined on:
$f(x) = \begin{cases} 2x+1 & \text{for } 0 \le x \\ 0 & \text{for } 0 \le x \end{cases}$	x < 2 Find (i) the domain of f. (ii) the image of f. (iii)
$x-2$ for $2 \le$ whether the function is	one to one or many one. (6.5)
Q4 (a) Define principle of dua (b) Let S={1,2,3,4,5,6} be	UNIT-II lity, complete lattice and distributive lattice. (6) ordered on in the figure given below: (6.5)
5 6 3 1 2	ordered on in the figure given below: (6.5)
	2 1a (10)

Find (i) All minimal and maximal elements of S.

- (ii) Greatest and least element.
- (iii) All linearly ordered subset with three or more elements.
- Q5 (a) Prove that product of two lattices is a lattice.
 (b) Determine whether D₁₂ is a finite Boolean Algebra or not.
 (c) Find the complement of each element of D₄₂.
 (3)

UNIT-III

Q6 (a) Find the equation of the plane passing though the line of intersection of the planes 3x-4y+2z=0 and 2x+3y-5z=6 and perpendicular to the plane x+2y-z=9.(6)

(b) If
$$U = \log \sqrt{x^2 + y^2 + z^2}$$
, show that $\left(x^{\frac{3}{2}} + y^2 + z^2\right) \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}\right) = 1$. (6.5)

- Q7 (a) Define chain rule of partial derivations. (2)
 - (b) Find $\frac{du}{dt}$, when $u = xy^2 + x^2y$, $x = at^2$, y = 2at. (4)
 - (c) Examine the function $Z = f(x, y) = y^3 x^2 + 6x 12y + 5$ for relative extrema. (3)
 - (d) Show that the plane ax+by+cz+d=0 touches the surface $px^2 + qy^2 + 2z = 0$. If

$$\frac{a^2}{p} + \frac{b^2}{q} + 2cd = 0. {(3.5)}$$

UNIT-IV

- Q8 (a) Find the volume generated by revolving the area bounded by the curve y=4x-x² and the x-axis about the line y=6. (6.5)
 - (b) Find the area of the region bounded by $y=x^2+1$, y=x, x=0 and y=2. (6)
- Q9 Evaluate $\iint r \sin \theta dr d\theta$ over the cardiode $r = a(1 \cos \theta)$ above the initial line. (12.5)

22 dry + 3 2 dry
(2m)2 (

