END TERM EXAMINATION

SECOND SEMESTER [BCA| MAY-2008

Paper Code: BCA102 Subject: Mathematics-II
Paper Id: 20102 (Batch: 2005-2007)
Time: 3 Hours Maximum Marks: 75

Note: Q.1 is compulsory. Attempt one question from each section.

- (a) Give all partitions of S={2,3,4}.
 (b) Let f(x)=x²-2, g(x)=3x and h(x)=(x+1)² be functions on R. Find goh, f²og, g³. (3)
 (c) Let A={2,3,7,8}, B={1,3,5}, C={3,5,9,11} find (i) B⊕C (ii) (A-B)∪(B-C) (iii) (AxB)∩(BxB).
 (d) Give an example of a relation which is (i) neither symmetric nor antisymmetric (ii) not irreflexive.
 (e) Give a topological sorting of the poset (D₂4, |), where Dn denotes the set of all positive divisors of and | denote divides.
 (g) Find the angle between the line x-3/2 = y-1/4 = z-2/3 and the plane x-y+2z=3.
 (h) What is the shortest distance between two given lines? Also, give the equations of shortest distance.
 - (i) Change the order of integration in $I = \int_{0}^{2a} \int_{x^2/4a}^{a} f(x,y) dx dy$. (3)

SECTION-A

- Q2 (a) Using set theory, prove the identity $(AxB) \cap (PxQ) = (A \cap P)x(B \cap Q)$. (6.5) (b) Find whether the function $f:N \rightarrow N$ defined by $f(n) = n^2 + n + 1$ is invertible or not. (6)
- Q3 (a) Given A={1,2,3,4,5,6}. Let R be a relation on A defined as R={(x,y); x+y is a divisor of 24} (6.5)
 - (i) Determine the matrix of relation R.
 - (ii) Find the composition R₀R.
 - (iii) Find the domain and range of R.
 - (iv) Compute transitive closure of R.
 - (b) Find the domain and range of the functions (i) $f(x) = \frac{1}{\sqrt{x-2}}$ (ii)

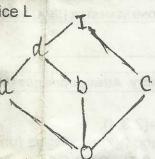
$$f(x) = \frac{|(x-3)|}{(x-3)}$$
 (6)

SECTION-B

- Q4 (a) Consider the poset ($\{\{1\}, \{2\}, \{4\}, \{1,2\}, \{1,4\}, \{2,4\}, \{3,4\}, \{1,3,4\}, \{2,3,4\}\}, \subseteq$)(6.5)
 - (i) Find all maximal and minimal elements.
 - (ii) Find the first and last elements.
 - (iii) Find all the upper bounds of {{2}, {4}} and its supremum, if it exists.
 - (iv) Find all the lower bounds of {1,3,4} and its infimum, if it exists.
 - (b) In a distributive lattice, if an element has a complement then this complement is unique. (6)
- Q5 (a) Consider a relation R on the set Z of all integers as follows aRb⇔a+b is even for all a, b∈Z. Is R a partial order relation? Prove or give a counter example. (4) P.T.O.

(b) Give an example of a relation, on the set {1,2,3} which is both a partial ordering and an equivalence relation. (6)

(c) Consider the bounded lattice L



(i) Find all join-irreducible elements.

(ii) Find the atoms.

- (iii) Is L complemented?
- (iv) Is L distributive?

Q6 (a) If $u = \sin^{-1} \left\{ \frac{x^{1/3} + y^{1/3}}{x^{1/2} + y^{1/2}} \right\}^{1/2}$ then show that

(i)
$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{-1}{12} \tan u$$

(ii) $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = \frac{\tan u}{144} (13 + \tan^2 u)$ (6.5)

- (b) Find the equations of the spheres through the circle $x^2+y^2+z^2=5$, x+2y+3z=3and touching the plane 4x+3y=15.
- (a) Find the maxima and minima of the function $f(x,y)=x^3+y^3-63(x+y)+12xy$. Q7
 - (b) Show that the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and 4x-3y+1=0=5x-3z+2coplanar. Also find their point of intersection. (6)

SECTION-D By changing to polar co-ordinates evaluate $\iint (x^2 + y^2) dxdy$ where R is the region Q8 in xy-plane bounded by $x^2+y^2=4$ and $x^2+y^2=9$ (12.5)

Find the volume of the sphere $x^2+y^2+z^2=a^2$. (12.5)

なったからから