I-COP ## **END TERM EXAMINATION** SECOND SEMESTER [BCA] MAY-JUNE 2009 Subject: Digital Electronics Paper Code: BCA-106 (Batch: 2005-2008) Paper Id: 20106 | (b) Describe and compare Register, Main Memory and Secondary Memory. (c) What are the drawbacks of S-R Flip-flop? How are they removed in J-K flip-flop? (d) Perform the following conversions: (i) (AB.08) ₁₆ = () 10 (ii) (670.04) ₈ = () 16 (e) Design full-subtractor using NAND Gate only. PART-A (22. (a) Realize (i) Y = A+BC D using NOR Gates only. (ii) Y = (A+C) (A+D) (A+B+C) using NAND Gates only. (b) Express the function Y = A+B C+BD in (i) Canonical SOP form (ii) Canonical POS form (iii) Canonical POS form (iv) (ii) Canonical POS form (iii) (i | | - | 20106(Batch: 2005-2008) | |---|--------|---|---| | (a) State and prove De-Morgan's theorem. (b) Describe and compare Register, Main Memory and Secondary Memory. (c) What are the drawbacks of S-R Flip-flop? How are they removed in J-K flip-flop? (d) Perform the following conversions: (i) (AB.08] ₀ = () ₁₀ (ii) (67.0.04] ₈ = () ₁₀ (e) Design full-subtractor using NAND Gate only. PART-A (22. (a) Realize (i) Y = A+BCD using NOR Gates only. (ii) Y = (A+C) (A+D) (A+B+C) using NAND Gates only. (iii) Y = (A+C) (A+D) (A+B+C) using NAND Gates only. (b) Express the function Y = A+BC-BD in (i) Canonical SOP form (ii) Canonical POS form (ii) Canonical POS form (iii) Canonical POS form (ii) Canonical POS form (ii) Canonical SOP and (ii) minimal POS expressions (b) If AB+CD=0, then by using Boolean algebra's laws and properties prove that: AB+C(A+D)=AB+BD+BD+ACD PART-B (4. (a) Explain Binary Multiplier. (b) Show how a full-adder can be converted to a full-subtractor with the addition of an inverter circuit. (5. (4) What are MUX & DEMÛX? Implement the following function using Multiplexer: F=∑m(0,1,3,4,8,9,13,15) (b) Design a code converter to convert Grey code into Binary code. PART-C Q6. (a) Define-flip-flop, Realize JK flip-flop using D-flip-flop. (b) Differentiate between combinational and sequential circuits. Explain the Race-Around condition and how can it be eliminated in Master-Slave JK. Flip Flop? Q7. (a) What are shift Registers? How are they different from Data Registers? The content of a 4-bit shift register is initially 1101. The register is shifted 6 times to the right with the serial input being 101101. What will be the final content of the register after all the 6 shifts are over? (b) Explain in detail the construction and working of Universal/Bidirectional shift register. | Time : | : 31 | | | (b) Describe and compare Register, Main Memory and Secondary Memory. (c) What are the drawbacks of S-R Plip-flop? How are they removed in J-K flip-flop? (d) Perform the following conversions: (i) (AB.08) ₁₆ = () no (ii) (670.04) ₈ = () no (iii) (670.04) ₈ = () no (iii) (670.04) ₈ = () no (iii) Y = (A+C) (A+D) (A+B+C) using NAND Gates only. (d) PART-A (22. (a) Realize (i) Y = A+BCD using NOR Gates only. (ii) Y = (A+C) (A+D) (A+B+C) using NAND Gates only. (b) Express the function Y = A+BC+BD in (i) Canonical SOP form (iii) Canonical POS form (iv) for | | - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | Note: Q1. is compulsory. Attempt one question from each part. | | (ii) Y = (A+C) (A+D) (A+B+C) using NAND Gates only. (b) Express the function Y = A+B+C+BD in (i) Canonical SOP form (ii) Canonical POS form (iii) Canonical POS form (iii) Canonical POS form (6. F= Σ _m (0,2,3,6,7) + Σ _a (8, 10, 11, 15) And obtain (i) minimal SOP and (ii) minimal POS expressions (b) If AB+CD=0, then by using Boolean algebra's laws and properties prove that: (ii) AB+CD=0 then by using Boolean algebra's laws and properties prove that: (iii) AB+CD=0 then by using Boolean algebra's laws and properties prove that: (iii) AB+CD=0 then by using Boolean algebra's laws and properties prove that: (iiii) AB+CD=0 then by using Boolean algebra's laws and properties prove that: (iiii) AB+CD=0 then by using Boolean algebra's laws and properties prove that: (iiii) AB+CD=0 then by using Boolean algebra's laws and properties prove that: (iiii) AB+CD=0 then by using Boolean algebra's laws and properties prove that: (iiii) AB+CD=0 then by using Boolean algebra's laws and properties prove that: (iiiii) AB+CD=0 then by using Boolean algebra's laws and properties prove that: (iiii) AB+CD=0 then by using Boolean algebra's laws and properties prove that: (iiii) AB+CD=0 then by using Boolean algebra's laws and properties prove that: (iiii) AB+CD=0 then by using Boolean algebra's laws and properties prove that: (iiii) AB+CD=0 then by using Boolean algebra's laws and properties prove that: (iiii) AB+CD=0 then by using Boolean algebra's laws and properties prove that: (iiii) AB+CD=0 then by using Boolean algebra's laws and properties prove that: (iiii) AB+CD=0 then by using Boolean algebra's laws and properties prove that: (iiii) AB+CD=0 then by using Boolean algebra's laws and properties prove that: (iiii) AB+CD=0 then by using Boolean algebra's laws and properties prove that: (iiii) AB+CD=0 then by using Boolean algebra's laws and properties prove that: (iiii) AB+CD=0 then by using Boolean algebra's laws and properties prove that: (iiiii) AB+CD=0 then by using Boolean algebra's laws and properti | Q1. | (b)
(c)
(d) | Describe and compare Register, Main Memory and Secondary Memory. What are the drawbacks of S-R Flip-flop? How are they removed in J-K flip-flop? Perform the following conversions: (i) (AB.08) ₁₆ = () ₁₀ (ii) (670.04) ₈ = () ₁₆ | | (ii) Y = (A+C) (A+D) (A+B+C) using NAND Gates only. (b) Express the function Y = A+B+C+BD in (i) Canonical SOP form (ii) Canonical POS form (iii) Canonical POS form (iii) Canonical POS form (6. F= Σ _m (0,2,3,6,7) + Σ _a (8, 10, 11, 15) And obtain (i) minimal SOP and (ii) minimal POS expressions (b) If AB+CD=0, then by using Boolean algebra's laws and properties prove that: (ii) AB+CD=0 then by using Boolean algebra's laws and properties prove that: (iii) AB+CD=0 then by using Boolean algebra's laws and properties prove that: (iii) AB+CD=0 then by using Boolean algebra's laws and properties prove that: (iiii) AB+CD=0 then by using Boolean algebra's laws and properties prove that: (iiii) AB+CD=0 then by using Boolean algebra's laws and properties prove that: (iiii) AB+CD=0 then by using Boolean algebra's laws and properties prove that: (iiii) AB+CD=0 then by using Boolean algebra's laws and properties prove that: (iiii) AB+CD=0 then by using Boolean algebra's laws and properties prove that: (iiiii) AB+CD=0 then by using Boolean algebra's laws and properties prove that: (iiii) AB+CD=0 then by using Boolean algebra's laws and properties prove that: (iiii) AB+CD=0 then by using Boolean algebra's laws and properties prove that: (iiii) AB+CD=0 then by using Boolean algebra's laws and properties prove that: (iiii) AB+CD=0 then by using Boolean algebra's laws and properties prove that: (iiii) AB+CD=0 then by using Boolean algebra's laws and properties prove that: (iiii) AB+CD=0 then by using Boolean algebra's laws and properties prove that: (iiii) AB+CD=0 then by using Boolean algebra's laws and properties prove that: (iiii) AB+CD=0 then by using Boolean algebra's laws and properties prove that: (iiii) AB+CD=0 then by using Boolean algebra's laws and properties prove that: (iiii) AB+CD=0 then by using Boolean algebra's laws and properties prove that: (iiii) AB+CD=0 then by using Boolean algebra's laws and properties prove that: (iiiii) AB+CD=0 then by using Boolean algebra's laws and properti | / | | PART-A | | (i) Canonical SOP form (ii) Canonical POS form (ii) Canonical POS form Q3. (a) Using the K-Map method, simplify the following Boolean function F=∑m (0,2,3,6,7) + ∑d (8, 10, 11, 15) And obtain (i) minimal SOP and (ii) minimal POS expressions (b) If AB+CD=0, then by using Boolean algebra's laws and properties prove that: AB+C(A+D)=AB+BD+BD+ACD PART-B Q4. (a) Explain Binary Multiplier. (b) Show how a full-adder can be converted to a full-subtractor with the addition of an inverter circuit. Q5. (a) What are MUX & DEMÛX? Implement the following function using Multiplexer: F=∑m(0,1,3,4,8,9,13,15) (b) Design a code converter to convert Grey code into Binary code. PART-C Q6. (a) Define flip flop. Realize JK flip-flop using D-flip-flop. (b) Differentiate between combinational and sequential circuits. Explain the Race-Around condition and how can it be eliminated in Master-Slave JK-Flip Flop? Q7. (a) What are shift Registers? How are they different from Data Registers? The content of a 4-bit shift register is initially 1101. The register is shifted 6 times to the right with the serial input being 101101. What will be the final content of the register after all the 6 shifts are over? (b) Explain in detail the construction and working of Universal/Bidirectional shift register. PART-D | Q2. | (a) | | | F=\(\sum_{\text{m}}\) (0,2,3,6,7) + \(\sum_{\text{d}}\) (8, 10, 11, 15) And obtain (i) minimal SOP and (ii) minimal POS expressions (b) If \(\beta\B+\CD=0\), then by using Boolean algebra's laws and properties prove that: \(AB+\C(\Bar{A}+\D)=AB+BD+\BD+\BD+\ACD\) PART-B Q4. (a) Explain Binary Multiplier. (b) Show how a full-adder can be converted to a full-subtractor with the addition of an inverter circuit. (6.4) What are MUX & DEMUX? Implement the following function using Multiplexer: \(F=\sum_{\text{m}}(0,1,3,4,8,9,13,15)\) (b) Design a code converter to convert Grey code into Binary code. PART-C Q6. (a) Pefine flip flop. Realize JK flip-flop using D-flip-flop. (b) Differentiate between combinational and sequential circuits. Explain the Race-Around condition and how can it be eliminated in Master-Slave JK-Flip Flop? (6.4) Q7. (a) What are shift Registers? How are they different from Data Registers? The content of a 4-bit shift register is initially 1101. The register is shifted 6 times to the right with the serial input being 101101. What will be the final content of the register after all the 6 shifts are over? (b) Explain in detail the construction and working of Universal/Bidirectional shift register. | | (b) | (i) Canonical SOP form | | PART-B Q4. (a) Explain Binary Multiplier. (b) Show how a full-adder can be converted to a full-subtractor with the addition of an inverter circuit. Q5. (a) What are MUX & DEMÛX? Implement the following function using Multiplexer: (6. F=Σm(0,1,3,4,8,9,13,15) (b) Design a code converter to convert Grey code into Binary code. PART-C Q6. (a) Define flip flop. Realize JK flip-flop using D-flip-flop. (b) Differentiate between combinational and sequential circuits. Explain the Race-Around condition and how can it be eliminated in Master-Slave JK-Flip Flop? Q7. (a) What are shift Registers? How are they different from Data Registers? The content of a 4-bit shift register is initially 1101. The register is shifted 6 times to the right with the serial input being 101101. What will be the final content of the register after all the 6 shifts are over? (b) Explain in detail the construction and working of Universal/Bidirectional shift register. | Q3. | (a) | $F = \sum_{m} (0,2,3,6,7) + \sum_{d} (8, 10, 11, 15)$ | | PART-B Q4. (a) Explain Binary Multiplier. (b) Show how a full-adder can be converted to a full-subtractor with the addition of an inverter circuit. Q5. (a) What are MUX & DEMÜX? Implement the following function using Multiplexer: (6.4) F=\(\sum_{\text{m}}(0,1,3,4,8,9,13,15)\) (b) Design a code converter to convert Grey code into Binary code. PART-C Q6. (a) Define flip flop. Realize JK flip-flop using D-flip-flop. (b) Differentiate between combinational and sequential circuits. Explain the Race-Around condition and how can it be eliminated in Master-Slave JK. Flip Flop? Q7. (a) What are shift Registers? How are they different from Data Registers? The content of a 4-bit shift register is initially 1101. The register is shifted 6 times to the right with the serial input being 101101. What will be the final content of the register after all the 6 shifts are over? (b) Explain in detail the construction and working of Universal/Bidirectional shift register. | .(1 | (b) | If $\overline{A}B + \overline{CD} = 0$, then by using Boolean algebra's laws and properties prove that: (6) | | PART-B Q4. (a) Explain Binary Multiplier. (b) Show how a full-adder can be converted to a full-subtractor with the addition of an inverter circuit. Q5. (a) What are MUX & DEMÜX? Implement the following function using Multiplexer: (6.4) F=\(\sum_{\text{m}}(0,1,3,4,8,9,13,15)\) (b) Design a code converter to convert Grey code into Binary code. PART-C Q6. (a) Define flip flop. Realize JK flip-flop using D-flip-flop. (b) Differentiate between combinational and sequential circuits. Explain the Race-Around condition and how can it be eliminated in Master-Slave JK. Flip Flop? Q7. (a) What are shift Registers? How are they different from Data Registers? The content of a 4-bit shift register is initially 1101. The register is shifted 6 times to the right with the serial input being 101101. What will be the final content of the register after all the 6 shifts are over? (b) Explain in detail the construction and working of Universal/Bidirectional shift register. | | | $AB + \overline{C}(\overline{A} + \overline{D}) = AB + BD + \overline{B}\overline{D} + \overline{A}\overline{C}D$ | | Q4. (a) Explain Binary Multiplier. (b) Show how a full-adder can be converted to a full-subtractor with the addition of an inverter circuit. Q5. (6.4) What are MUX & DEMÜX? Implement the following function using Multiplexer: [6.4] F=Σm(0,1,3,4,8,9,13,15) (b) Design a code converter to convert Grey code into Binary code. PART-C Q6. (a) Define flip flop. Realize JK flip-flop using D-flip-flop. (b) Differentiate between combinational and sequential circuits. Explain the Race-Around condition and how can it be eliminated in Master-Slave JK Flip Flop? Q7. (a) What are shift Registers? How are they different from Data Registers? The content of a 4-bit shift register is initially 1101. The register is shifted 6 times to the right with the serial input being 101101. What will be the final content of the register after all the 6 shifts are over? (b) Explain in detail the construction and working of Universal/Bidirectional shift register. PART-D | | | 현대의 위원 2015년 1일 | | F=\(\sum_{m}(0,1,3,4,8,9,13,15)\) (b) Design a code converter to convert Grey code into Binary code. PART-C Q6. (a) Define flip flop. Realize JK flip-flop using D-flip-flop. (b) Differentiate between combinational and sequential circuits. Explain the Race-Around condition and how can it be eliminated in Master-Slave JK Flip Flop? (6.1) Q7. (a) What are shift Registers? How are they different from Data Registers? The content of a 4-bit shift register is initially 1101. The register is shifted 6 times to the right with the serial input being 101101. What will be the final content of the register after all the 6 shifts are over? (b) Explain in detail the construction and working of Universal/Bidirectional shift register. | Q4. | (a)
(b) | Explain Binary Multiplier. Show how a full-adder can be converted to a full-subtractor with the addition of | | Q6. (a) Define flip flop. Realize JK flip-flop using D-flip-flop. (b) Differentiate between combinational and sequential circuits. Explain the Race-Around condition and how can it be eliminated in Master-Slave JK. Flip Flop? (6.1) Q7. (a) What are shift Registers? How are they different from Data Registers? The content of a 4-bit shift register is initially 1101. The register is shifted 6 times to the right with the serial input being 101101. What will be the final content of the register after all the 6 shifts are over? (b) Explain in detail the construction and working of Universal/Bidirectional shift register. | Q5. 🔪 | | $F = \sum_{m} (0,1,3,4,8,9,13,15)$ | | Q6. (a) Define flip flop. Realize JK flip-flop using D-flip-flop. (b) Differentiate between combinational and sequential circuits. Explain the Race-Around condition and how can it be eliminated in Master-Slave JK Flip Flop? (6.1) Q7. (a) What are shift Registers? How are they different from Data Registers? The content of a 4-bit shift register is initially 1101. The register is shifted 6 times to the right with the serial input being 101101. What will be the final content of the register after all the 6 shifts are over? (b) Explain in detail the construction and working of Universal/Bidirectional shift register. | | (b) | Design a code converter to convert Grey code into Binary code. | | (b) Differentiate between combinational and sequential circuits. Explain the Race-Around condition and how can it be eliminated in Master-Slave JK. Flip Flop? (6.1) (a) What are shift Registers? How are they different from Data Registers? The content of a 4-bit shift register is initially 1101. The register is shifted 6 times to the right with the serial input being 101101. What will be the final content of the register after all the 6 shifts are over? (b) Explain in detail the construction and working of Universal/Bidirectional shift register. | | | PART-C | | content of a 4-bit shift register is initially 1101. The register is shifted 6 times to the right with the serial input being 101101. What will be the final content of the register after all the 6 shifts are over? (b) Explain in detail the construction and working of Universal/Bidirectional shift register. PART-D | Q6. | | Differentiate between combinational and sequential circuits. Explain the Race-Around condition and how can it be eliminated in Master-Slave JK. Flip Flop? (6.1) | | register. PART-D | Q7. | | content of a 4-bit shift register is initially 1101. The register is shifted 6 times to the right with the serial input being 101101. What will be the final content of the register after all the 6 shifts are over? (6.5) | | | | (0) | | | | | | PART-D | | Q8. (a) Design a mod-10 counter to count in Grey code using D-flip flop. | O8. | (a) | Design a mod-10 counter to count in Grey code using D-flip flop. | - (b) What is a Ripple Counter? Draw the wave forms to explain how this circuit can (6.5)be used as a "Frequency Divider". - (a) What is a RAM? State the differences between Static RAM and Dynamic RAM. Q9. (b) What is a ROM? State the differences among ROM, PROM, EPROM and (6.5)