END TERM EXAMINATION

SECOND SEMESTER [BCA] MAY - JUNE 2007

	e:3 H	ours		Sub	oject: Digi	tal Electronic				
Not	e: Que	estion No. 1	is compuls	sory. Attempt	four que	Ma stions from	aximum Ma the remail	arks :7 nina		
pap	er, sei	ecting one que	estion from	each part.						
Q1.	(a)	Find out the value of the following.								
		(i) (11	010010)2 =	(X) ₈				/1		
		(ii) (AB	$(x)_{16} = (x)_2$	(-,)0				(1		
	(b)	Fill in the b						(1		
		(i)	ga	te does not ta	ke part in	logical opera	ition	(1		
		(ii) The	ai	nd dates	are unive	real nates		14		
		(III) The	gate	generates	transfer fu	inction of ann	olied input.	(1		
	(c)									
		F(A, B, C,	$D = \Sigma (0, 6)$	5, 8, 13, 14)				(5)		
	(4)	$D(A, B, C, D) = \Sigma(2, 4, 10)$								
	(d)	Design 3-bit binary counter using T flip-flop. Sum of all minterms of a Boolean function of n variables is 1. Prove this								
	(e)	ourn or all	minterms o	r a Boolean fu	inction of	n variables is	1. Prove t	this		
	(f)	Statement	or n=3.					(5)		
	(1)	.Constiuct a	master-si	ave flip-flop us	sing two R	-S flip-flops.		(5)		
				DADTA						
				PART-A						
Q2.	(a)	Design a combinational circuit whose input is a three to								
	. ,									
	(b)	whose output is 2's complement of the number. Explain why NOR and NAND gates are universal gates. (7)								
	,,			OR	are univer	sai gales.		(5.5)		
Q3.	(a)	Design a 4-bit binary to gray code converter. (7)								
	(b)	Design a E	BCD to Ex	cess-3 code	converter	with a BCI	D-to-Decin	(7)		
		decoder and	d four OR	gates.		with a bot	J-10-Decili	(5.5)		
								(3.3)		
				PART-B						
24.	(a)	Explain a parallel binary adder with the help of logical diagram and sum								
		two binary n	umpers A	= 1101 and B=	=1001 usir	na narallel hir	apple vice	(7)		
	(b)	two binary numbers A = 1101 and B=1001 using parallel binary adder. (7) Explain a full adder circuit and construct it with the help of a 3 X 8								
		Decoder and	d two OR g	ates.			U. W. U. X.	(5.5)		
76	()			OR				850 050		
ລ5.	(a) Design sequential circuit for the following state table using 2-bit registe									
		and combine	ational gate	S.				(7.5)		
	3.2	Present		INPUT	NEXT	STATE				
		A	В	X	Α	В				
		0	0	0	0	0				
		0	0	1	0	. 1				
	y.	0	1	0	1	0				
		1	1	. 1	0	1		14		
		1	0	0	1	0				
		1	0	1 -	1	1 1				
		1	1	0	1	0				
			1 1	1 7	10	4				

PART-C

Q6.	(a)	A flip-flop has 20-ns delay from the time its CP input goes from 1 to 0 to the time the output is complemented. Find out the followings. (5) What is the maximum delay in a 10-bit binary ripple counter that uses these flip-flops? (ii) What is the maximum frequency at which the counter can operate reliable?						
		operate reliably?						
	(b)	Explain shift register and different configurations of shift register. (7.5) OR						
Q7.	(a)	Why J-K flip-flops is known as universal flip-flop. Design a T-flip-flop and D-flip-flop using J-K flip-flop.						
	(b)	Design a logical diagram of a 32 x 4 ROM. (5.5)						
		PART-D						
Q8.	(a)	Explain look-ahead carry generator and design logical diagram of a look-ahead carry generator.						
	(b)	Explain multiplexer and implement it to the following Boolean function using 4 x 1 multiplexer.						
		$F(A, B, C) = \Sigma(1, 3, 5, 6)$ (5)						
Q9.	· (a)	Design a combinational circuit that accepts a two bit number and						
	(b)	Write short notes on any two of the followings. (7.5) (i) Encoder						
		(ii) Sequential Circuit (iii) Edge-Triggered-Flip-Flop (iv) Demultiplexers						

· · · jii 🏚 · ·