END TERM EXAMINATION

FIRST SEMESTER [BBA] DEC.2014 - JAN.2015

Pap	er Code: BBA-105 BBA(TTM)-105	Subject: Business Mathematics			
Tim	e: 3 Hours	Maximum Marks: 75			
Note: Attempt any six questions.					
Q1	(a) Prove by induction, the following. $10^{n} + 3.4^{n+2} + 5$ is divisible by	9.			
	(b) Find the value of r if ${}^{20}C_r = {}^{20}C_{r+2}$	(6.5)			
Q2	 (a) A committee consists of 10 members, 6 belonging to party A and 4 to pa B. In how many ways can a committee of 5 to be selected so that 1 members of the party A are in majority. (b) Find the sum to n terms of the series 8+88+888+ n terms. (6) 				
Q3	(a) Given below the National Income M C = a + bY ($a > 0, 0 < b < 1$) I = d + eY ($d > 0, 0 < e < 1$) Y = I + C Solve for the endogenous variables	C, I and Y using cramers rule.			
	(b) Find the inverse of the matrix $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	$\begin{bmatrix} -1 & 0 \\ 1 & -1 \\ 0 & 1 \end{bmatrix}$ and hence solve the system of			
	equations: $x - y = a$, $y - z = b$, $x + z = b$	= c . (6.5)			
04	Given below is the transaction matrix	for two industries I_1 and I_2 . Find the gross			

Q4 Given below is the transaction matrix for two industries I_1 and I_2 . Find the gross output of each industry if the final demand is 80 and 40 units respectively.

ndustry	Input to		Domestic	Total
	I ₁	I_2	demand	output
I ₁	30	40	50	120
I_2	20	10	30	60

Also test the Hawkins Simon Conditions.

Q5 (a) A monopolist has the following demand function $p = 2\left(100 - \frac{x}{4}\right)$ and the cost

function is given by $c(x) = 120x + \frac{x^2}{2}$ where p is the price per unit and x is the output. Find the most profitable output and the maximum profit. (6) (b) If x, y and z are respectively the sum of p, q and r terms of an A.P. Show

that
$$\frac{x}{p}(q-r) + \frac{y}{q}(r-p) + \frac{z}{r}(p-q) = 0.$$
 (6.5)

- Q6 (a) Optimise the Utility function $U = 4xy y^2$ subjected to the constraint 2x + y = 6. (6)
 - (b) Find the maximum and minimum values of the function, $f(x) = x^5 - 5x^4 + 5x^3 - 1$. Discuss its nature at x = 0. (6.5)

(12.5)

Q7 (a) A firm manufactures 5000 Air conditioners per day. It is observed the rate of change of production w.r.t additional number of workers employed (i.e.x) is given by 100-6x^{1/2}. If the firm employs 16 workers more, estimate the new level of production. (6)

(b) Find the PS if the supply curve is $P = \sqrt{9+x}$ and quantity sold is 7 units.(6.5)

Q8 (a) Solve:

$$(2x3=6)$$

(i)
$$\frac{dy}{dx} = 1 + x + y + xy,$$

(ii)
$$e^x \sqrt{1-y^2} dx + \frac{y}{x} dx = 0$$
,

(iii)
$$\frac{dy}{dx} = \frac{x^2 - 2y^2 + xy}{x^2}$$
.

(b) Demand and supply functions for tea are given by

$$x_{d} = \left\{ 120 - 2p + 5\frac{dp}{dt} \right\} \text{ kg per week}$$
$$x_{s} = \left\{ 3p - 30 + 50\frac{dp}{dt} \right\} \text{ kg per week.}$$

Where p is the price at time t. If the initial price is 36 per kg, find the condition for dynamic equilibrium. (6.5)