END TERM EXAMINATION

SECOND SEMESTER (MCA) MAY-JUNE 2009

Paper Code: Paper Id: 441	MCA 102	102 Subject: Data Structures (Batch: 2004-2008)
Time : 3 Hou	rs	Maximum Marks:60
Note: Q. is co	mpuls	ory. Intenal choice is indicated.
Q1.	Ansv	wer <u>any ten</u> from the following: $(2x10=20)$
	(a)	Give examples of time-space tradeoff.
	(b)	How would you create generic data structures (capable of
		holding data of any type) in C?
	(c)	What are Priority Queues? What are their applications?
	(d)	What is the time complexity of insert and delete operations in a linked queue if pointer to the head of the queue is maintained.
	(e)	Give an example situation where a duoublestack can utilized more efficiently than two separate stacks.
	(f)	Which traversal order would you prefer to clone a BST? Why?
	(g)	Demonstrate insert operation in an AVL tree for the key values: 10, 20, 30, 5 and 7?
	(h)	What are decision trees? Where are they used?
	(i)	What is Transitive Closure of a graph? How would you generate it?

- (j) A list is ordered from smaller to largest when a sort is called. Which sorting algorithm would take the shortest time to execute? Justify.
- (k) Name an O(n) sorting algorithm with its drawback?
- (l) Describe any two hash functions.
- (m) What limitations are added to external sort algorithms when the data is stored on tape drives?
- (n) How many disk accesses are required in direct addressing mode of random file organization if the records have variable length? Justify.
- (o) Name a file organization technique that supports batch Operations and range queries efficiently. Justify your choice.

UNIT-I

- Q2. (a) Write a C program that converts a sparse matrix (less than 25% populated) to a linked list of its non-zero entries, ensuring that the original data can be retrieved back from this linked storage. (5)
 - (b) Evaluate and compare the average case time complexity Of Binary Search and Linear Search algorithms. (5)

OR

- Q3. (a) Write a C function to merge two sorted linked lists into new sorted list. (5)
 - (b) Give any three applications of stacks and queues each in System Programming. (3)
 - (c) List advantages and disadvantages of arrays over linked lists. (2)

- Q4. (a) Write a C function to insert a node in a threaded BST. (5)
 - (b) What is topological sorting of a graph? Show the working of the topological sorting algorithm (clearly stating the output after each pass) for the graph whose adjacency matrix is given below: (5)

0	0	1	1	1
1	0	0	1	1
0	0	0	0	0
0	0	1	0	1
0	0	1	0	0

- Q5. (a) Write a C program to delete a node from binary search Tree. (5)
 - (b) Show the working of Prim's algorithm on the following Graph: (5)

UNIT-III

Q6. (a) Demonstrate the working of Shell Sort Algorithm on the Following list taking 5, 3, 1 as increment values: (5) 22, 7, 5, 1, 10, 9, 20, 12, 35, 16, 11, 8, 3, 25, 6

(b) Explain the working of balanced K-way merge sort using 2K and K+1 tapes. Explain the advantages and disadvantages of the two approaches.
(5)

OR

- Q7. (a) Explain various collision resolution techniques, while hashing a set of keys clearly stating their advantages and disadvantages. (5)
 - (b) Demonstrate the working of polyphase merge sort with three tapes, give that initial number of sorted run is 55. (4)
 - (c) How would polyphase mergesort proceed if the initial number of runs is not a Fibonacci number? (1)

UNIT-IV

- Q8. (a) Explain Cylinder surface indexing and the mechanism used for searching a record using this indexing technique. (5)
 - (b) Explain the usage of cellular partitions for organizing file storage. How can this technique be used for improving efficiency of read write operations? (4)
 - (c) While searching a key, how is number of disk accesses related to the order of a tree in tree based indexes? (1)

OR

- Q9. (a) Explain inverted file organization, how is it different from regular files and indexes? List its advantages and disadvantages. (4)
 - (b) Explain tree based indexing using m-way trees. (6)
