•••••

END TERM EXAMINATION

FIRST SEMESTER [MCA] DECEMBER-2008

Paper Code: MCA 103	Subject: Digital Electronics
Paper Id: 44103 2008)	(Batch: 2004-

Time: 3 Hours

Maximum Marks: 60

Note: Q. 1 is compulsory. Attempt one question from each unit.

- Q.1 Answer the following:
 - (a) A NOR gate is also referred to as a 'Negative AND gate'. Why? (1)
 - (b) Give the maximum positive and negative numbers which can be represented in 2's complement form using n bits? (1)
 - (c) Most PC-compatible computer system use 20-bit address code to identify over one million binary locations. How many hex-characters are required to identify the address (1)
 - (d) The logic expression $Y = \Pi M(1,4,6,9,10,11,14,15)$ is equivalent to____(1)
 - (e) How many states does a twisted ring counter consists of four flip-flops (1)
 - (f) Name three major categories into which programmable ROMs can be divided. (1)
 - (g) How does a priority encoder differ from an ordinary encoder? (1)
 - (h) What do you understand by system bus? (1)
 - (i) Why should the shift register stages be edge triggered? (1)
 - (j) Design a mod-3 binary counter? (2)
 - (K) Attempt <u>Any Three</u> of the following: $(3 \times 3 = 9)$
 - (i) Explain the operation of Schmitt Trigger work?
 - (ii) Obtain the canonical sum of product and product of sum of the following expression $f = X_1 X_2 X_3 + X_1 X_3 X_4 + X_1 X_2 X_4$

- (iii) Design a 64: 1 multiplexer using 16: 1 multiplevers.
- (iv) Design a parity checker circuit to add an even parity bit to a 16-bit word. Use two 74180 packages.

UNIT - I

Q2.	(a)	Discu the li	ss the advantages of digital system over analog system. What mitation of a digital system?	· is (3)
	(b)	Conv	ert the decimal numbers 95.5 into hexadecimal number.	(2)
	(C)	Write	the next four numbers in the following sequence	(2)
		(i)	Octal counting sequence 124, 125, 126	
		(ii)	Hexadecimal sequence E9A, E9B, E9C, E9D	
	(d)	7-bit hamming code is received as 1101101. Locate the error position and find the correct code. (2		
	(e)	What	is the cyclic code?	(1)
			OR	
Q3.	(a)	Add t	he following numbers using the 2's complement method 47 a	Ind
		+29.		(3)
	(b)	What comp	is the necessary condition for a weighted code to be self- plementing code? Give two examples of weighted code.	(2)
	(C)	Perfoi arithn	rm the following subtraction using the 10's complement netic 196-155.	(2)
	(d)	Desig	n XNOR gate using minimum number of NAND gates only.	(3)

UNIT - II

Q4.	(a)	Design BCD-to-Excess -3 code converter.	(4)
	(b)	Reduce the following Boolean expression using Boolean algebra	
		((AB' + ABC) + A(B+AB'))'	(3)
	(c)	Design a 3 bit binary-to-octal decoder.	(3)

- Q5. (a) Design a combinational circuit with 4 input and outputs. The output generates the 2's complement of the input binary number. (5)
 - (b) Using the K-map simplify the following function into minimal SOP

$$f(u,w,x,y,z) = \sum m(0,2,5,7,9,11,13,15,16,18,21,23,25,27,29,31)$$
(5)
UNIT - III

(b) How will you convert a D flip flop into a J-K flip flop. (5)

OR

- Q7. (a) Describe the working of shift left register with diagram. (3)
 - (b) Design a synchronous decade counter to count in the Excess-3 code sequence. Using minimum number of J-K flip flops. (7)

UNIT – IV

Q8.	(a)	Explain the working of R-2R digital-to-analog converter. Discuss the characteristics of D\A converters.	the (6)	
	(b)	What is PLD? How are PLD s categorized? Draw the structure of PLA of the following function		
		X = A'B'C'D + A'B'CD		
		Y = A'B'CD + ABCD'		
		Z = A'B'C'D + A'B'CD + ABCD'	(4)	
		OR		
Q9.	(a)	Draw the functional block diagram of 8085 microprocessor.	(7)	
	(b)	Write short notes on Any One of the following:	(3)	
		(i) Content addressable memory		

(ii) 3-bit parallel comparator A/D converter
